
Patterns for Returning Error Information in C
CHRISTOPHER PRESCHERN, B&R Industrial Automation GmbH

Error handling is part of any industrial strength code. In programming languages like C, which have no support for enhanced

error handling mechanisms like exceptions, error handling is a non-trivial task and many decisions on how to implement it have
to be made. This paper documents best practices for these decisions as well as their benefits and liabilities in form of design

patterns on the topic of how to return error information in the C programming language.

1. INTRODUCTION

Error handling is a major concern for every program. For every program, the programmer has to decide
how to react on errors arising in his own code, how to react on errors arising in 3rd party code, how to
pass this error information along in the code, and how to present this error information to the user.

Most object-oriented programming languages come with the handy mechanism of exceptions to pro-
vide the programmer with an additional channel for transporting error information. However, pro-
gramming languages like C do not natively provide such a mechanism. There are ways to emulate
exception handling or even inheritance among exceptions in C as presented in [Schreiner 1993] or
[Moen 1992]. However, for C programmers working on legacy C code or for C programmers who want
to stick to the native C style they are used to, introducing such exception mechanisms is not the way
to go. Instead such C programmers need guidance on how to use the mechanisms for error handling
already natively present in the C programming language.

That is where this paper comes in. The paper is part of a series of papers on patterns for the C
programming languages and it describes how to transport error information in the C programming
language. Compared to a previous paper of this series [Preschern 2015], which focused on how error
handling within the implementation of a single C function can be improved, this paper focuses on how
error information can be transported between functions or between software-modules.

2. OVERVIEW OF PATTERNS PRESENTED IN THIS PAPER

The following patterns on error handling in C are described in this paper. The pattern RETURN ERROR
CODES describes to provide the caller with numeric codes representing an occurring errors. RETURN
RELEVANT ERRORS suggests to only transport error information to the caller, if the caller can react
on these errors in the code and SPECIAL RETURN VALUE and LET IT CRASH show how to do that.
LOG ERRORS suggests to provide an additional channel to transport error information which is not
intended for the caller, but for the user or for debugging purposes.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’19, July 3-7, 2019, Irsee, Germany
c© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6387-7/17/07...$15.00
https://doi.org/10.1145/XXXXXXX

Proceedings of the 24th European Conference on Pattern Languages of Programs

2 • C. Preschern

Throughout this paper, these patterns are presented in detail and are applied to a running example
in order to make them easier to grasp. The following figure provides an overview of the patterns pre-
sented in this paper and of related patterns from literature. A short description of all these patterns is
shown in the appendix.

3. RELATED WORK

Unsurprisingly, there already is quite some literature out there on the topic of error handling. However,
When narrowing it down to the C programming language or even to patterns for the C programming
language, there is just very few literature available and that is where this paper comes in.

A comprehensive overview of error handling in general is provided by [Aglassinger 1999] who de-
scribes error handling best practices including code examples for several programming languages in-
cluding C.

The Portland Pattern Repository [Portland Pattern Repository] provides many patterns and discus-
sions on error handling as well as other topics. Most of the error handling patterns target exception
handling, but also some C idioms are presented. More C idioms are presented in the book by [Tornhill
2014], which also provides other patterns for the C programming language.

[Longshaw and Woods 2004] and [Longshaw and Woods 2005] present a collection of patterns for
error logging and error handling, where most of the patterns target exception-based error handling.
Patterns on exception-based error handling are also presented by [Wirfs-Brock 2005]. [Renzel 1997]
presents error handling patterns tailored for object-oriented business information systems; however,
most of the patterns can be applied for other domains as well.

This paper gathers the most common error handling techniques of the literature mentioned above
and it provides additional insights by elaborating in more detail when which of the error handling tech-
niques can be applied and which consequences arise. By showing error handling techniques across dif-
ferent functions and software-modules, this paper adds to a previous paper on error handling [Presch-
ern 2015], which only focused on error handling techniques within a function implementation.
Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 3

4. PATTERNS AND RUNNING EXAMPLE

Running example:

The running example in this grey box will show how to apply the presented patterns.

You want to implement a software-module which provides functionality to store string-values
for keys identified via strings. In other words you want to implement some functionality similar
to the Windows registry. To keep things simple, the following code will not contain hierarchical
relationships between the keys and only functions to create registry elements will be discussed.

REGISTRY API REGISTRY IMPLEMENTATION
/* Handle for registry keys */
typedef struct Key* RegKey;

/* Create a new registry key
identified via the
provided ’key_name’ */

RegKey createKey(char* key_name);

/* Store the provided ’value’ to
the provided ’key’ */

void storeValue(RegKey key,
char* value);

/* Make the key available
for being read (by other
functions which are not
part of this code example) */

void releaseKey(RegKey key);

#define STRING_SIZE 100
#define MAX_KEYS 40

struct Key
{
char key_name[STRING_SIZE];
char key_value[STRING_SIZE];

};

/* file-global array holding all registry keys */
static struct Key* key_list[MAX_KEYS];

RegKey createKey(char* key_name)
{
RegKey newKey = calloc(1, sizeof(struct Key));
strcpy(newKey->key_name, key_name);
return newKey;

}

void storeValue(RegKey key, char* value)
{
strcpy(key->key_value, value);

}

void releaseKey(RegKey key)
{
int i;
for(i=0; i<MAX_KEYS; i++)
if(key_list[i] == NULL)

key_list[i] = key;
}

With the code above, you are not sure how you should provide your caller with error information
in case of internal errors or, for example, in case of unterminated string-input. Your caller does
not really know whether the calls succeeded or whether something failed and ends up with the
following code:

CALLER CODE
RegKey my_key = createKey("myKey");
storeValue(my_key, "A");
releaseKey(my_key);

The caller’s code is very short and easy to read. However, the caller does not know whether
any error occurred and the caller has no possibility to react on errors. To give the caller that
possibility you next want to introduce error handling in your code and you want to provide your
caller with error information. The first idea that comes to your mind is to let the caller know
about any errors showing up in your software-module. To do that, you RETURN ERROR CODES.

Proceedings of the 24th European Conference on Pattern Languages of Programs

4 • C. Preschern

RETURN ERROR CODES

Context:
You implement a software-module which performs some error handling and you want to
transport error information to your caller.

Problem:
You want to have a mechanism to transport error information to the caller, so that the
caller can react on them in his code. You want the mechanism to be simple to use and the
caller should be able to clearly distinguish between different error situations which could
occur.

In the old days of C, error information was transported by an ERROR CODE WITH ERRNO.
The global errno variable had to be reset by the caller, then a function had to be called,
and the function indicated occurring errors by setting the global errno variable, which
the caller had to check after the function call.

However compared to using errno, you rather want a way to transport error information
which makes it easier for the caller to check for errors. The caller should see from the
function signature at best how the error information will be transported and which kind
of error information to expect.

Also, the mechanism to transport error information should be safe to use in a multi-
threaded environment and only the called function should have the possibility to influ-
ence the transported error information. In other words: It should be possible to use the
mechanism and still have a reentrant function.

Solution:
Use the RETURN VALUE of a function to transport error information. Return a numeric
identifier which represents a specific kind of error. The caller can check the function re-
turn value against the error identifiers and can react in his code accordingly. In case the
function has to return other function results, provide them to the caller in form of OUT-
PARAMETERS.

Define the numeric error identifiers in your API in form of an enum or by using define. If
there are many error codes or if your software-module consists of more than one headerfile,
you could have a separate headerfile which just contains the error codes and which is
included by your other headerfiles.

Give the error identifiers a meaningful name and document their meaning in form of
comments. Make sure to name your error codes in a consistent way across your APIs.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 5

Code Example

CALLER CALLEE API

ErrorCode status = func();
if (status == MAJOR_ERROR)
{

/* abort program */
}
else if (status == MINOR_ERROR)
{

/* handle error */
}
else if (status == OK)
{

/* continue normal execution*/
}

typedef enum
{
MINOR_ERROR,
MAJOR_ERROR,
OK

} ErrorCode;

ErrorCode func();

CALLEE IMPLEMENTATION

ErrorCode func()
{
if (minorErrorOccurs())

return MINOR_ERROR;
else if (majorErrorOccurs())
return MAJOR_ERROR;

else
return OK;

}

Consequences:
You now have a way to transport error information which makes it very easy for the caller
to check for occurring errors. Compared to errno, the caller does not have to set and check
the error information in steps additionally to the function call, but instead the caller can
directly check against the return value of the function call.

Returning error codes can safely be used in multi-threaded environments. Callers can be
sure that only the called function and no other side-channels influence the returned error.

The function signature makes it very clear how the error information is transported. This
is made clear for the caller and also clear for the compiler or for static code analysis tools,
which can check whether the caller checked the function return value and whether the
caller checked against all errors which could occur.

As the function now provides different results in different error situations, these results
have to be tested. Compared to a function without any error handling, more extensive
testing has to be done.

C only provides one single return value which is now used to transport error information.
Thus the return value cannot be used for transporting other function results anymore.
That means that other function results now have to be transported as OUT-PARAMETERS,
which have the drawback that an additional parameter is required for the function and
that from the function signature, it is not clear that that additional parameter is not used
as function input, but is used to transport results computed by the function.

Proceedings of the 24th European Conference on Pattern Languages of Programs

6 • C. Preschern

Known Uses and Related Patterns:
• Microsoft uses HRESULT to return error information. An HRESULT is a unique error

code. Making the error code unique has the advantage that the error information can
be transported across many functions while still making it possible to find out where
the error originated. However, makeing the error code unique brings in additional ef-
fort for assigning error numbers and for keeping track of who is allowed to use which
error numbers. Another specialty of HRESULT is that it encodes specific information,
like for example the severity of an error, into the error code by using some bits dedi-
cated to transport this information.

• The code of the Apache Portable Runtime defines the type apr status t to return er-
ror information. Any function which returns error information via this way returns
APR SUCCESS on success or any other value to indicate errors. Other values are
uniquely defined error codes specified via #define statements.

• The openssl code defines error codes in several header files (dsaerr.h, kdferr.h, ...).
As an example, the error codes KDF R MISSING PARAMETER or KDF R MISSING SALT
inform the caller in detail about missing or wrong input parameters. The error codes
in each of the files are just defined for a specific set of functions which belong to that
file and the error code values are not unique across the whole openssl code.

• Having an ERROR CODE is described in the Portland Pattern Repository as a pattern
sketch, which also describes the idea of returning error information by explicitly using
the function’s return value.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 7

Running example:

Now you provide your caller with information in case of errors in your code. In your code you
check for things that could go wrong and you provide that information to the caller.

REGISTRY API REGISTRY IMPLEMENTATION
/* Error codes returned

by this registry */
typedef enum
{

OK,
OUT_OF_MEMORY,
INVALID_KEY,
INVALID_STRING,
STRING_TOO_LONG,
CANNOT_ADD_KEY

}RegError;

/* Handle for registry keys */
typedef struct Key* RegKey;

/* Create a new registry key identi-
fied via the provided ’key_name’.
Returns OK in case no problem
occurs, INVALID_KEY if
the ’key’ parameter is NULL,
INVALID_STRING if ’key_name’
is NULL, STRING_TOO_LONG if
’key_name’ is too long, or
OUT_OF_MEMORY if no memory
resources are available. */

RegError createKey(char* key_name,
RegKey* key);

/* Store the provided ’value’ to
the provided ’key’.
Returns OK in case no problem
occurs, INVALID_KEY if
the ’key’ parameter is NULL,
INVALID_STRING if ’value’ is
NULL, or STRING_TOO_LONG
if ’value’ is too long. */

RegError storeValue(RegKey key,
char* value);

/* Make the key available
for being read. Returns OK if
no problem occurs,
INVALID_KEY if ’key’
is NULL, or CANNOT_ADD_KEY
if the registry is full and no
more keys can be released. */

RegError releaseKey(RegKey key);

#define STRING_SIZE 100
#define MAX_KEYS 40

struct Key
{
char key_name[STRING_SIZE];
char key_value[STRING_SIZE];

};

/* file-global array holding all registry keys */
static struct Key* key_list[MAX_KEYS];

RegError createKey(char* key_name, RegKey* key)
{
if(key == NULL)
return INVALID_KEY;

if(key_name == NULL)
return INVALID_STRING;

if(STRING_SIZE <= strlen(key_name))
return STRING_TOO_LONG;

RegKey newKey = calloc(1, sizeof(struct Key));
if(newKey == NULL)
return OUT_OF_MEMORY;

strcpy(newKey->key_name, key_name);

*key = newKey;
return OK;

}

RegError storeValue(RegKey key, char* value)
{
if(key == NULL)
return INVALID_KEY;

if(value == NULL)
return INVALID_STRING;

if(STRING_SIZE <= strlen(value))
return STRING_TOO_LONG;

strcpy(key->key_value, value);
return OK;

}

Proceedings of the 24th European Conference on Pattern Languages of Programs

8 • C. Preschern

RegError releaseKey(RegKey key)
{
int i;
if(key == NULL)
return INVALID_KEY;

for(i=0; i<MAX_KEYS; i++)
if(key_list[i] == NULL)
{

key_list[i] = key;
return OK;

}

return CANNOT_ADD_KEY;
}

Now the caller can react on the provided error information and can, for example, provide the
user of the application with detailed information about what went wrong.

CALLER CODE
RegError err;
RegKey my_key;

err = createKey("myKey", &my_key);
if(err == INVALID_KEY || err == INVALID_STRING)
printf("Internal application error\n");

if(err == STRING_TOO_LONG)
printf("Provided registry key name too long\n");

if(err == OUT_OF_MEMORY)
printf("Insufficient resources to create key\n");

err = storeValue(my_key, "A");
if(err == INVALID_KEY || err == INVALID_STRING)
printf("Internal application error\n");

if(err == STRING_TOO_LONG)
printf("Provided registry value to long to be stored to this key\n");

err = releaseKey(my_key);
if(err == INVALID_KEY)
printf("Internal application error\n");

if(err == CANNOT_ADD_KEY)
printf("Key cannot be relased, because the registry is full\n");

Now the caller can react on errors; however, note that the code for the registry software-module
as well as the code for the caller more than doubled in size. Error handling did not come for free.
A lot of effort was put into implementing error handling. That can also be seen in the registry
API. The comments for the functions became a lot longer, because they have to describe which
error situations can occur. Also the caller has to put a lot of effort into thinking about what to
do if a specific error occurs.

With providing such detailed error information to the caller, you burden the caller with reacting
on these errors and with thinking about which errors are relevant to handle and which are
irrelevant to the caller. Thus, special care as to be taken to on the one hand, provide the caller
with the necessary error information, but to also on the other hand not flood the caller with
information he does not need.

Next you want to make these considerations in your code and you only want to provide error
information which is actually useful to the caller. Thus, you only RETURN RELEVANT ERRORS.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 9

RETURN RELEVANT ERRORS

Context:
You implement a software-module which performs some error handling and you want to
transport error information to your caller.

Problem:
On the one hand, the caller should have the possibility to react on errors; however, on the
other hand the more error information you return, the more your code and the code of your
caller has to deal with error handling, which makes the code longer. Longer code is harder
to read and maintain and longer code brings in the risk of additional bugs.

In order to transport error information to your caller, detecting the error and returning
the information is not the only task you have to do. Additionally you have to document in
your API which errors are returned. If you don’t do that, then your caller would not know
that he has to expect and handle these errors. Documenting error behavior is work that
has to be done. The more errors there are, the more documentation work has to be done.

Returning very detailed, implementation-specific error information and adding additional
error information later on in your code if the implementation changes implies that with
such an implementation change you have to semantically change your interface which
documents the returned error information. Such changes might not be desirable for your
existing callers, because they would have to adapt their code to additionally react on the
newly introduced error information.

Providing more detailed error information is also not always a good thing for the caller
ether. Each error information transported to the caller means additional work for the
caller. The caller has to decide whether the error information is relevant to him and how
to handle it.

Solution:
Only transport error information to the caller, if that information is relevant to the caller.
Error information is only relevant to the caller, if the caller can react on that information
in his code. If the caller cannot react on the error information in his code, then it would be
unnecessary to provide the caller to opportunity (or the burden) to react on the error.

If the only reason for transporting the error to the caller is that the caller can then also
transport this error information to his callers, who then log this error information or dis-
play it to the user, then why would not the software-module where the error occurred
directly LOG ERRORS like these?

There are several way how to only return relevant error information. One way is to sim-
ply not return any error information at all. For example, when having some function
cleanupMemory(void* handle) which cleans up memory for the provided HANDLE,

Proceedings of the 24th European Conference on Pattern Languages of Programs

10 • C. Preschern

then there is no need to transport information whether the cleanup succeeded, because
the caller can not react in the code and such a cleanup error (retrying to call a cleanup
function is in most cases no solution). Thus the function can simply not return any error
information. To make sure that errors within the function do not go unnoticed, it might
even be an option to LET IT CRASH in case an error occurs.

If you already RETURN ERROR CODES, then only the error information which is relevant
to the caller should be transported. Other errors which occur can be summarized as one
internal error code and if the detailed error information is needed for debugging purposes,
you could LOG ERRORS. If you realize that there are not many error situations after only
returning relevant errors, then instead of error codes, it might a better solution to simply
have SPECIAL RETURN VALUES to transport the error information.

Code Example

CALLER CALLEE API

ErrorCode status = func();
if (status == MAJOR_ERROR ||

status == UNKNOWN_ERROR)
{

/* abort program */
}
else if (status == MINOR_ERROR)
{

/* handle error */
}
else if (status == OK)
{

/* continue normal execution*/
}

typedef enum
{
MINOR_ERROR,
MAJOR_ERROR,
UNKNOWN_ERROR,
OK

} ErrorCode;

ErrorCode func();

CALLEE IMPLEMENTATION
ErrorCode func()
{
if (minorErrorOccurs())
return MINOR_ERROR;

else if (majorErrorOccurs())
return MAJOR_ERROR;

else if(internalError1Occurs() ||
internalError2Occurs())

return UNKNOWN_ERROR;
else
return OK;

}

In the code above, the same error information is returned in case internalError1Occurs
and in case internalError2Occurs, because it is irrelevant for the caller which of the
two implementation-specific errors occurs. The caller would react on both errors in the
same way (in the example above: aborting the program).

Consequences:
Not returning detailed information about which kind of internal errors occurred is a relief
for the caller. The caller is not burdened with thinking about how to handle all possible
internal errors which occur and it is more likely that the caller does actually react on all
different kind of errors which are transported to him, because all of the transported errors

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 11

make sense to him. Also testers can be happy, because now that less error information is
returned by the functions, less error situations have to be tested.

In case the caller uses very strict compilers or static code analysis tools which verify
whether the caller does check for all possible return values, the caller does not have to
simply explicitly handle errors he is not interested in (e.g. a switch statement will many
fallthroughs and one error handling for all internal errors). Instead, the caller only han-
dles one internal error code or in case that you LET IT CRASH, the caller does not have to
handle any of such errors.

Not returning the detailed error information makes it impossible to the caller to show this
error information to the user or to save this error information for debugging purposes for
the developer. However, for such debugging information it would be better to LOG ERRORS
directly in the software-module where they occur and not burden the caller with doing
that.

If you don’t transport all information about errors occurring in your function, but instead
you only transport information which you think is relevant to the caller, then there is the
chance that you get it wrong. You might forget some information which is necessary for
the caller and maybe that leads to a change request for adding this information. If you
RETURN ERROR CODES, additional error codes can easily be added to your function, but
when using SPECIAL RETURN VALUES, it might not be so easy to add error information
later on.

Known Uses and Related Patterns:
• The function FlushWinFile of the game Nethack flushes a file to the disk calling the

Macintosh function FSWrite which does return error codes. However, the Nethack
wrapper explicitly ignores the error code and FlushWinFile is of return type void,
because the code using that function cannot react accordingly in case an error occurs.
Thus, the error information is not passed along.

• The openssl function EVP CIPHER do all initializes several cipher suites by calling
the internal function OPENSSL init crypto, which does return error information.
However, this error information is ignored by the EVP CIPHER do all function which
is of return type void.

• For security-relevant code it is very common to only return relevant information in
case of errors. For example, if a function to authenticate a user returns detailed in-
formation whether authentication did not work, because the username is invalid, or
because the password is invalid, then the caller could use this function for checking
which usernames are already taken. To avoid opening such information side-channels,
it is common to only transport the binary information whether authentication worked
or not. For example, the function rbacAuthenticateUserPassword used to authen-
ticate users in the B&R Automation Runtime operating system has the return type
bool and returns true in case the authentication worked or returns false in case it
did not work. No detailed information about why the authentication did not work is
returned.

Proceedings of the 24th European Conference on Pattern Languages of Programs

12 • C. Preschern

Running Example:

When you only RETURN RELEVANT ERRORS, your registry code looks like the following. To keep
things simple, only the createKey is shown:

REGISTRY API REGISTRY IMPLEMENTATION
/* Create a new registry key

identified via the provided
’key_name’. Stores a handle to
the key in the provided ’key’
parameter.
Returns OK on success,
STRING_TOO_LONG if the
provided ’key_name’ is too long,
OUT_OF_MEMORY in case of
insufficient memory, or
INVALID_PARAMETER if any
of the provided parameters
is not valid. */

RegError createKey(char* key_name,
RegKey* key);

RegError createKey(char* key_name, RegKey* key)
{
if(key == NULL || key_name == NULL)
return INVALID_PARAMETER;

if(STRING_SIZE <= strlen(key_name))
return STRING_TOO_LONG;

RegKey newKey = calloc(1, sizeof(struct Key));
if(newKey == NULL)
return OUT_OF_MEMORY;

strcpy(newKey->key_name, key_name);

*key = newKey;
return OK;

}

Instead of returning INVALID KEY or INVALID STRING, now the function returns
INVALID PARAMETER for all these error cases. Now the caller cannot handle the two error sit-
uations differently which also means the caller does not have to think about how to handle the
two error situations differently. The caller code becomes more simple, because now there is one
error situation less to be handled.

That is good, because what would the caller do in case the function returns INVALID KEY or
INVALID STRING? It wouldn’t make any sense for the caller to try calling the function again.
In both cases the caller could just accept that calling the function did not work and the caller
could report that to the user or he could abort the program. As there would be no reason for the
caller to react differently on the two errors, you now took the caller the burden to think about
two different error situations. Now the caller only has to think about one error situation and
has to react accordingly.

Next, you question yourself whether it is even necessary that the caller has to decide how to
react on such an INTERNAL ERROR and you realize that you can take the decision from the
caller and LET IT CRASH.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 13

LET IT CRASH

Context:
You have a function in which major errors can occur. Perhaps currently you already RE-
TURN ERROR CODES and perhaps you only RETURN RELEVANT ERRORS to your caller.

Problem:
When transporting error information via the RETURN VALUE to your caller, you cannot be
sure that the caller actually handles this error. In C it is not mandatory to check return
values of the called functions and your caller can simply ignore the return value of a
function. In case the error which occurs in your function is major, sometimes you don’t
want your caller to decide whether the error should be handled. Instead you’d want to
make sure that definitely an action is taken in case the error occurs.

You don’t want to have additional parameters for your function only to transport error
information. When RETURNING ERROR CODES you have the drawback that you have to
use the RETURN VALUE of the function to transport error information and you have to
add additional OUT-PARAMETERS to transport the actual function results. In some cases,
instead, you could transport error information via SPECIAL RETURN VALUES and you
therefore wouldn’t need OUT-PARAMETERS; however, that is not always possible.

The errors in your code might only occur very rarely. Handling such rarely occurring situ-
ations makes the caller code less readable, because it distracts from the actual purpose of
the caller code. The caller might have to write many lines of code to handle a very rarely
occurring situation.

If the caller handles some error situation, quite often the program will still crash or some
error will still occur. The error might simply show up somewhere else - maybe somewhere
in the caller’s caller code who does not handle error situations properly. In such a case,
handling the error disguises the error and that makes it much harder to debug the error
in order to find out the root cause.

Solution:
Don’t use any additional parameters or the return value of your function to transport error
information. In case an error in occurs, simply let the program crash. At best, abort the
program in a structured way, e.g. by using the assert statement. However, also aborting
the program in a less structured way, e.g. by not checking for NULL pointers and by ac-
cessing the pointer, would be OK. Simply make sure that the program crashes at the point
where the error occurs.

Of course, this approach is not appropriate for any kind of errors and not appropriate for
any kind of application domains. You wouldn’t want to let the program crash in case of
some unexpected user input. However, in case of a programming error, it can be appropri-
ate to let the program crash in order to make it as simple as possible for the programmers
to find the error. To make it even easier to find the error, you can LOG ERRORS.

Proceedings of the 24th European Conference on Pattern Languages of Programs

14 • C. Preschern

Quite often a function has GUARD CLAUSES, which check for valid pre-conditions (valid
parameters) at the beginning of the function. Some of these parameter validity checks are
very good candidates to LET IT CRASH.

The caller has to be well aware of the behavior of your function, so you have to document
in the functions API in which cases the function aborts the program. For example, the
function documentation has to state whether the program crashes in case the function is
provided a NULL pointer as parameter.

Code Example

CALLER CALLEE

func();
/* continue - no error

handling required */

void func()
{
if(severeErrorOccurs())
{

assert(false);
}

}

Consequences:
Errors can be directly handled in the callee code. The caller does not have to cope with
handling the error and thus the caller code becomes much simpler. Also, it is not possible
that the error goes unnoticed, because it is not up to the caller to check some return value
for error information. Instead the callee code makes sure that the error is handled.

The caller is not burdened with the decision on how to handle the error; however, that
also means that the caller has no saying on how the program reacts in case such an error
occurs. In case of such an error, the program simply crashes. In some cases that is good,
because sometimes a crash is better that unpredictable behavior, but in some other cases
that might not be appropriate. For example, for safety-critical applications it might be
necessary to implement fault-tolerance mechanisms and simply aborting the program is
not an option at all.

If the error occurs and the program directly crashes at that point, then the programmer
is provided with very good debug information. When you LOG ERRORS or when you are
using the assert statement with an ASSERTION CONTEXT, then you’ll get very detailed
information regarding where in the code an error occurred.

Known Uses and Related Patterns:
• The SAMURAI PRINCIPLE [Preschern 2015] suggests to use the assert statement in

C on order to make erorr handling within the implementation of a function easier.
• A similar pattern with the name LET IT CRASH is presented by [Alho and Rauhamäki

2013]. The pattern targets distributed control systems and suggests to let single fail-
safe processes crash and to let them restart quickly.

• [Candea and Fox 2003] describe that Internet applications should fail fast and recov-
ers quickly in order to provide more reliable services.

• The C stdlib function strcpy does not check for valid user input. If you provide the
function with a NULL pointer, it crashes.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 15

Running Example:

Now that you intentionally LET IT CRASH in case of some internal errors, your createKey
function looks like the following:

REGISTRY API REGISTRY IMPLEMENTATION
/* Create a new registry key

identified via the provided
’key_name’ (must not be NULL,
max. STRING_SIZE characters).
Stores a handle to the key in the
provided ’key’ parameter (must
not be NULL).
Returns OK on success, or
OUT_OF_MEMORY in case of
insufficient memory. */

RegError createKey(char* key_name,
RegKey* key);

RegError createKey(char* key_name, RegKey* key)
{
assert(key != NULL && key_name != NULL);
assert(STRING_SIZE > strlen(key_name));

RegKey newKey = calloc(1, sizeof(struct Key));
if(newKey == NULL)
return OUT_OF_MEMORY;

strcpy(newKey->key_name, key_name);

*key = newKey;
return OK;

}

Instead of returning an INVALID PARAMETER or STRING TOO LONG, now the function aborts the
program in case one of the provided parameters is not what you expect them to be. Aborting in
case of too long strings at first seems a bit drastic. However, similar to NULL pointers, a too
long string is invalid input for your function. In case your registry does not get its string input
from a user via a GUI, but instead gets a fixed input from the caller’s code, then also for too long
strings this code only aborts in case of programming errors which is perfectly fine behavior.

The caller does not have to think about how to handle these errors. The function implementation
takes away that burden from the caller and therefore the caller’s code becomes more simple.
However, also the caller cannot influence the error handling behavior of the function and the
caller cannot gracefully handle such errors of the function. For some applications that is ok;
however, for some other applications failure might not be an option and such errors would have
to be handled in a fault tolerant way.

Anyways, for your registry you know that the caller can only make a useful application in case
he calls the registry function with valid parameters - calling it with invalid parameters is a
programming error and you decide that such errors rather have to be fixed and not masquer-
aded. Thus the above code aborts the program in case of invalid parameters and it does that by
explicitly using assert.

An alternative approach, which makes your code shorter, would be to build on the fact that
accessing a NULL pointer also aborts the program and that the function strcpy also does not
check for NULL pointers. So an alternative would be to skip the first assert statement in in the
code. The code would still have the same behavior and it would be shorter; however, it would
have the disadvantage that it would not explicitly show anymore that you do want it to fail in
case of NULL pointers. Somebody reading such code could assume that the programmer simply
forgot about handling these error situations.

Sticking with the code in the code sample above, next, you realize that the createKey func-
tion only returns two different error codes: OUT OF MEMORY and OK. Your code can be made
much more beautiful by simply transporting this kind of error information with SPECIAL RE-
TURN VALUES.

Proceedings of the 24th European Conference on Pattern Languages of Programs

16 • C. Preschern

SPECIAL RETURN VALUES

Context:
You have a function which computes some result and you want to transport error infor-
mation to your caller if an error occurs when executing the function. You only want to
transport RELEVANT ERROR INFORMATION.

Problem:
It is not an option to you to explicitly RETURN ERROR CODES to transport error infor-
mation, because that implies that you cannot use the RETURN VALUE of the function
to return other data and you’d have to transport that data via OUT-PARAMETERS which
would make calling your function more difficult. However, you want it to be very simple to
call your function.

Returning no error information at all is also not an option to you. You want to provide your
caller with some error information and you want your caller to be able to react on these
errors in his code. There is not a lot of error information which you want to transport to
your caller. It might just be the binary information whether the function call worked or
whether it did not work. To RETURN ERROR CODES for such simple information would be
an overkill.

You cannot LET IT CRASH, because the errors occurring in your function are not severe
or because you want to make it possible to the caller to decide how the errors should be
handled, because maybe the caller can handle the errors gracefully.

Solution:
Use the RETURN VALUE of your function to transport the data computed by the function.
Reserve one ore more special values to be returned in case an error occurs.

If, for example, your function returns a pointer, then you could use as reserved special
value the NULL pointer to indicate that some error occurred. The NULL pointer is by
definition no valid pointer, so you can be sure that this special value is not confused with
a valid pointer calculated by your function as a result.

You have to make sure to document in the API which returned special value has which
meaning. In some cases a common convention settles which special values indicate er-
rors. For example, UNIX functions usually indicate an error by returning negative integer
values. Still, even in such cases the meaning of the specific return values have to be docu-
mented.

You have to make sure that the special value which indicates error information really
is a value which cannot occur in case of no error. For example, if a function returns a
temperature value in degree Celsius as an integer value, then it would not be a good idea
to stay with the UNIX convention where any negative value indicates an error. Instead,

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 17

it would be better to use, for example, the value -300 to indicate an error, because it is
physically impossible that a temperature takes a value below -273 degree Celsius.

Code Example

CALLER CALLEE

void* pointer = func();
if (pointer != NULL)
{

/* continue */
}
else
{

/* handle error */
}

void* func()
{
if(somethingGoesWrong())
{

return NULL;
}
else
{
return some_pointer;

}
}

Consequences:
The function can now return error information via the RETURN VALUE even though the
RETURN VALUE is used to transport the computation result of the function. No additional
OUT-PARAMETERS have to be used only for having a way to transport error information.

Sometimes you don’t have many special values to encode error information. For example,
for pointers there is only the NULL pointer to indicate error information. That leads to
the situation that it is only possible to indicate to the caller whether everything worked
well or whether anything went wrong. This has the drawback that you cannot transport
detailed error information. However, this also has the benefit that you are not tempted to
transport unnecessary error information. In many cases it is sufficient to only transport
the information that anything went wrong and the caller cannot react on more detailed
information anyway.

If, at a later point in time, you realize that you have to transport more detailed error in-
formation, then perhaps that is not possible anymore because you have no more unused
special values left. You’d have to change the whole function signature and instead RETURN
ERROR CODES to transport that additional error information. Changing the function sig-
nature might not always be an option, because your API might have to stay compatible for
existing callers. In such cases, it might be better to RETURN ERROR CODES right at the
beginning in order to be able to react on such changes while maintaining compatibility.

Sometimes programmers assume that it is clear which returned values indicate errors. For
example, to some programmers it might be clear that a NULL pointer indicates an error.
For some other programmers it might be clear that -1 indicates an error. This brings in
the dangerous situation that the programmers assume that it is clear to everybody which
values indicate errors. However, these are just assumptions. In any case it should be well-
documented in the API which values indicate errors, but sometimes programmers forget
to do that wrongly assuming that that is absolutely clear.

Proceedings of the 24th European Conference on Pattern Languages of Programs

18 • C. Preschern

Known Uses and Related Patterns:
• The C stdlib function fopen returns a FILE handle in case no error occurs. In case of

an error, like for example, if you don’t have the permission to open the file, the function
returns NULL. Additionally, the function sets the errno variable to transport more
specific information about the error.

• The getobj function of the game Nethack returns the pointer to some object in case
no error occurs and returns NULL in case an error occurs. To indicate the special case
that there is no object to return, the function returns the pointer to a global object
called zeroobj which is a object of the return type defined for the function and which
is also known to the caller. The caller can then check whether the returned pointer is
the same as the pointer to the global object and can thus distinguish between a pointer
to any valid object and a pointer to the zeroobj which carries some special meaning.

• The C stdlib function getchar reads a character from stdin. The function has return
type int which allows transporting much more information than simple characters.
In case no more characters are available, the function returns EOF which is usually
defined as -1. As characters cannot take negative integer representations, EOF can
clearly be distinguished from regular function results and can thus be used to indicate
the special situation when no more characters are available.

• Most UNIX or POSIX function use negative numbers to transport error information.
For example, the POSIX function write returns the number of written bytes or -1 on
error.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 19

Running Example:

With SPECIAL RETURN VALUES, your code looks like the following. To keep it simply, only the
createKey function is shown.

REGISTRY API REGISTRY IMPLEMENTATION
/* Create a new registry key

identified via the provided
’key_name’ (must not be NULL,
max. STRING_SIZE characters).
Returns a handle to the key or
NULL on error. */

RegKey createKey(char* key_name);

RegKey createKey(char* key_name)
{
assert(key_name != NULL);
assert(STRING_SIZE > strlen(key_name));

RegKey newKey = calloc(1, sizeof(struct Key));
if(newKey == NULL)
return NULL;

strcpy(newKey->key_name, key_name);
return newKey;

}

The createKey function became much more simple. It does not RETURN ERROR CODES any-
more, but instead it directly returns the handle and no OUT-PARAMETER is needed to transport
this information. Because of that, also the API documentation for the function became much
more simple, because there is no need to describe the additional parameter and there is no need
to lengthly describe how the function result will be transported to the caller.

Things also became much more simple for your caller. The caller does not have to provide a
handle as an OUT-PARAMETER anymore, but instead the caller directly retrieves this handle
via the RETURN VALUE, which makes the caller’s code a lot more readable and thus easier to
maintain.

However, now you have the problem, that compared to the detailed error information which you
can transport if you RETURN ERROR CODES, now the only error information which comes out
of the function is whether it worked or whether it did not work. The internal details about the
error are thrown away and if you need these details later on, for example as debug information,
there is no way to get it. To address that issue, you can LOG ERRORS.

Proceedings of the 24th European Conference on Pattern Languages of Programs

20 • C. Preschern

LOG ERRORS

Context:
You have a function in which you handle errors. You only want to transport RELEVANT
ERROR INFORMATION to your caller for reacting on it in the code; however, you want to
keep detailed error information for later debugging.

Problem:
You want to make sure that in case of an error, it is possible for the programmer to later
on find out the cause of that error. One way would be to transport very detailed error in-
formation to the caller, also for example error information indicating programming errors.
To do that you can RETURN ERROR CODES to the caller who then displays the detailed
error codes to the user. The user might get back to you (e.g. via some service hotline) to
ask what that error code means and how to fix the problem. Then you’d have your detailed
error information to debug the code and you could figure out what went wrong.

However, such an approach has the major drawback, that the caller, who does not care at
all about that error information, has to transport the error information to the user only
for the sake of having a way that this error information is provided to you. Also the user
does not really care about such detailed error information.

In addition, to RETURN ERROR CODES has the drawback that you have to use the RETURN
VALUE of the function to transport error information and you have to use additional OUT-
PARAMETERS to transport the actual function results. In some cases, instead, you can
transport error information via SPECIAL RETURN VALUES; however, that is not always
possible. You don’t want to have additional parameters for your function only to transport
error information, because it makes your caller’s code more complicated.

Solution:
Use different channels to transport error information which is relevant for the calling code
and error information which is relevant for the developer. For example, write debug error
information into a log file and don’t return the detailed debug error information to the
caller. In case an error occurs, the user of the program has to provide you with the logged
debug information. For example, the user has to send you a log file via e-mail.

Alternatively, you could, at the interface between you and your caller, log the error (LOG
AT DISTRIBUTION BOUNDARIES) and additionally RETURN RELEVANT INFORMATION to
the caller. For example, the caller could be informed that some internal error occurred, but
the caller does not see which detailed kind of error occurred. Thus, the caller could still
handle the error in the code without requiring knowledge on how to handle very detailed
errors and you’d while still not be losing valuable debug information.

For such valuable debug information, you should log information about programming er-
rors and you should LOG UNEXPECTED ERRORS. For such errors it is valuable to store
information about where the error occurred, for example, the source code file name and
the line number, or the BACKTRACE.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 21

Code Example

CALLER CALLEE

func();
/* continue - no error

handling required */

void func()
{
if(somethingGoesWrong)
{

logInFile("something went wrong");
}

}

Consequences:
You can obtain debug information without requiring your caller to handle or to transport
this information. That makes life for the caller a lot easier, because the caller does not
have to handle or transport the detailed error information which he is not at all interested
in. Instead, you transport the detailed error information yourself.

Maybe in some cases, you just want to log some error or situation which occurred, but
which is completely irrelevant to the caller. Thus, you don’t even have to transport any
error information to the caller. For example, if you LET IT CRASH in case the error occurs,
the caller does not at all have to react on the error and still you can make sure to not lose
valuable debug information if in such a case, you LOG ERRORS. So there are no additional
parameters to your function required in order to transport error information and that
makes calling your function a lot easier and it helps the caller to keep his code clean.

Still, you don’t lose this valuable error information and can still use it for debug purposes,
for example, to hunt down programming errors. To not loose this debug information, you
transport it via a different channel - e.g. via log files. However, you have to think about
how to get to these log files. You could ask the uses to send you the logfile via e-mail or,
more advanced, you could implement some automatic bug report mechanism. However,
with both of these approaches you cannot be 100% sure that the log information really
gets back to you. If the user does not want that, he could prevent it.

Known Uses and Related Patterns:
• The Apache webserver code uses the function ap log error write errors related to

requests or connections to an error log. Such a log entry contains information about
the filename and line of code where the error occurred and it contains a custom string
provided to the function by the caller. The log information is stored in a error log
file on the server.

• The B&R Automation Runtime operating system provides a logging system which al-
lows programmers to transport logging information to the user via calling the function
EVENTLOGWRITE from anywhere in the code. This makes it possible to transport in-
formation to the user without having to transport this information across the whole
calling stack up to some central logging component.

• ASSERTION CONTEXT suggests to not only LET IT CRASH, but to additionally log in-
formation about the reason or about the position of the crash by adding a string state-
ment inside the assert call. If the assert fails, then the link of code containing the
assert statement will be printed and that then includes the added string.

Proceedings of the 24th European Conference on Pattern Languages of Programs

22 • C. Preschern

Running example:

After applying the patterns, you’ll get to the following final code for your registry software-
module. This code provides the caller with relevant error information, but does not require the
caller to handle errors about implementation details he is not interested in.

REGISTRY API REGISTRY IMPLEMENTATION
/* max. size of string parameters

(including NULL-termination) */
#define STRING_SIZE 100

/* Error codes returned
by this registry */

typedef enum
{

OK,
CANNOT_ADD_KEY

}RegError;

/* Handle for registry keys */
typedef struct Key* RegKey;

/* Create a new registry key
identified via the provided
’key_name’ (must not be NULL,
max. STRING_SIZE characters).
Returns a handle to the key or
NULL on error. */

RegKey createKey(char* key_name);

/* Store the provided ’value’
(must not be NULL, max.
STRING_SIZE characters) to
the ’key’ (MUST NOT BE NULL) */

void storeValue(RegKey key,
char* value);

/* Make the ’key’ (must not be
NULL) available for being read.
Returns OK if no problem occurs
or CANNOT_ADD_KEY if the
registry is full and no more
keys can be released. */

RegError releaseKey(RegKey key);

#define MAX_KEYS 40

struct Key
{
char key_name[STRING_SIZE];
char key_value[STRING_SIZE];

};

/* macro to log debug info and to assert */
#define logAssert(X) \

if(!X) \
{ \

printf("Error at line \%i", __LINE__) \
assert(false); \

}

/* file-global array holding all registry keys */
static struct Key* key_list[MAX_KEYS];

RegKey createKey(char* key_name)
{
logAssert(key_name != NULL)
logAssert(STRING_SIZE > strlen(key_name))

RegKey newKey = calloc(1, sizeof(struct Key));
if(newKey == NULL)
return NULL;

strcpy(newKey->key_name, key_name);
return newKey;

}

void storeValue(RegKey key, char* value)
{
logAssert(key != NULL && value != NULL)
logAssert(STRING_SIZE > strlen(value))

strcpy(key->key_value, value);
}

RegError releaseKey(RegKey key)
{
logAssert(key != NULL)

int i;
for(i=0; i<MAX_KEYS; i++)
if(key_list[i] == NULL)
{

key_list[i] = key;
return OK;

}

return CANNOT_ADD_KEY;
}

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 23

The code above is shorter compared to the earlier code of the running example, because:

- The code does not check for programming errors but aborts the program in case of program-
ming errors. Invalid parameters like NULL pointers are not gracefully handled in the code,
but instead the API documents that the handles must not be NULL.

- The code only returns errors which are relevant for the caller. For example, the createKey
function does not RETURN ERROR CODES, but instead simply returns a handle and NULL
in case of error, because the caller does not need more detailed error information.

While to code is shorter, the API comments grew. The comments now specify more clearly how
the functions behave in case of errors. That helped that apart form your code, also the caller’s
code became simpler, because now the caller is not burdened anymore with that many decisions
on how to react on different kinds of error information.

CALLER CODE
RegKey my_key = createKey("myKey");
if(my_key == NULL)
printf("Cannot create key\n");

storeValue(my_key, "A");

RegError err = releaseKey(my_key);
if(err == CANNOT_ADD_KEY)
printf("Key cannot be relased, because the registry is full\n");

The code above is shorter compared to the earlier code of the running example, because:

- The return value of functions which abort in case of error do not have to be checked
- Functions where no detailed error information is required directly return the requested item.

For example, createKey() now returns a handle and the caller does not have to provide an
OUT-PARAMETER anymore.

- Error codes which indicate a programming error, like for example an invalid provided param-
eter, are not returned anymore and thus do not have to be checked by the caller anymore.

The final code of the running example showed, that it is important to think about which kind of
error should be handled in the code and how these errors should be handled. Simply returning
all kind of errors and requiring the caller to cope with all these errors is not always the best
solution, because maybe the caller is not interested with that detailed error information or
maybe the caller does not want to react on the error in the application. Maybe the error is
severe enough so that already at the point where the error occurs it can be decided to abort the
program. Such measures make the code simpler and have to be considered when designing the
API of a software-component.

Proceedings of the 24th European Conference on Pattern Languages of Programs

24 • C. Preschern

5. CONCLUSION

This paper showed in form of patterns how a C programmer can implement error handling with the
focus on transporting error information across software-module boundaries. The ERROR CODE pattern
suggests to use the return value of functions to return error information. RETURN RELEVANT ERRORS
suggests to only return error information in case the programmer can react on it in his code and
SPECIAL RETURN VALUE and LET IT CRASH provide ways how to do that. LOG ERRORS suggests to
have a separate channel for transporting debug information to the programmer.

This paper is part of a series of papers on C programming [Preschern 2015][Preschern 2016][Presch-
ern 2017][Preschern 2018a][Preschern 2018b]. This series of papers is the start of a collection of hands-
on best practices for the C programming language.

ACKNOWLEDGMENTS

I want to thank my shepherd...

REFERENCES

Thomas Aglassinger. 1999. Error Handling in Structured and Object-Oriented Programming Languages. Master’s thesis.
University of Oulu.

Pekka Alho and Jari Rauhamäki. 2013. Patterns for Light-Weight Fault Tolerance and Decoupled Design in Distributed Control
Systems. In Proceedings of VikingPLoP 2013 Conference.

George Candea and Armando Fox. 2003. Crash-Only Software. In Proceedings of the 9th Workshop on Hot Topics in Operating
Systems (HotOS-IX).

Andy Longshaw and Eoin Woods. 2004. Patterns for Generation, Handling and Management of Errors. In Proceedings of the 9th
European Conference on Pattern Languages of Programs (EuroPLoP).

Andy Longshaw and Eoin Woods. 2005. More Patterns for the Generation, Handling and Management of Errors. In Proceedings
of the 10th European Conference on Pattern Languages of Programs (EuroPLoP).

Doug Moen. 1992. A Discipline of Error Handling. In Proceedings of the Summer 1992 USENIX Conference.
Portland Pattern Repository. Portland Pattern Repository. http://c2.com/cgi/wiki. (????).
Christopher Preschern. 2015. Idioms for Error Handling in C. In Proceedings of the 20th European Conference on Pattern

Languages of Programming (EuroPLoP).
Christopher Preschern. 2016. API Patterns in C. In Proceedings of the 21st European Conference on Pattern Languages of

Programming (EuroPLoP).
Christopher Preschern. 2017. Patterns for C Iterator Interfaces. In Proceedings of the 22nd European Conference on Pattern

Languages of Programming (EuroPLoP).
Christopher Preschern. 2018a. C Patterns on Objects and their Lifetime. In Proceedings of the 23rd European Conference on

Pattern Languages of Programming (EuroPLoP).
Christopher Preschern. 2018b. Patterns for Returning Data from C Functions. In Proceedings of the 23rd European Conference

on Pattern Languages of Programming (EuroPLoP).
Klaus Renzel. 1997. Error Handling for Business Information Systems. http://www.objectarchitects.de/arcus/cookbook/exhandling/.

(1997).
Axel-Tobias Schreiner. 1993. Object oriented programming with ANSI-C. Dept. of Computer Science (GCCIS)–E-prints.
Adam Tornhill. 2014. Patterns in C. Leanpub.
Rebecca J. Wirfs-Brock. 2005. Toward Exception-Handling Best Practices and Patterns. IEEE Software 23, 5 (2005), 11–13.

Proceedings of the 24th European Conference on Pattern Languages of Programs

Patterns for Returning Error Information in C • 25

APPENDIX - PATLETS
Pattern Name Pattern Solution Sketch
RETURN ERROR
CODES

Use the return value of a function to return error information to the caller. Return the actual
result of the function via OUT-PARAMETERS.

SPECIAL RETURN
VALUE

Use the return value of a function to return the result of a function. Return a special reserved
value in case an error occurs. E.g. when returning a pointer, NULL indicates an error.

LET IT CRASH For critical errors, do not leave the caller the decision how to handle the error. Instead directly
abort the program [Alho and Rauhamäki 2013].

LOG ERRORS Provide the programmer with detailed error information in a log instead of returning all this
information to the calling code.

RETURN RELEVANT
ERRORS

Only return error information on which the caller can react on this information in his code.

RETURN VALUE Simply use the one C mechanism intended to retrieve information about the result of a function
call: The Return Value. The return-mechanism in C copies the function result and provides the
caller access to this copy [Preschern 2018b].

OUT-PARAMETERS Return all the data with one single function call. C does not support returning multiple types
using the RETURN VALUE and C does not natively support by-reference arguments, but by-
reference arguments can be emulated by passing pointers as function parameters and by writing
data to the memory pointed to [Preschern 2018b].

ASSERTION
CONTEXT

Add information about the context of a assertion Add this information by placing fixed string
with this information in the assertion. Place the string inside a condition which always evaluates
to “true” [Tornhill 2014].

SAMURAI
PRINCIPLE

Return from a function victorious or not at all. If there is a situation for which you know that an
error cannot be handled, abort the program [Preschern 2015].

GUARD
CLAUSE

Check whether your function has pre-conditions and immediately return if these pre-conditions
are not met. For example, check for the validity of input data. [Preschern 2015].

LOG UNEXPECTED
ERRORS

Error conditions that are expected to arise in the course of normal domain processing should not
be logged but handled in the code or by the user. Hence, any logged error should be viewed as
requiring investigation [Longshaw and Woods 2005].

LOG AT DISTRIBUTION
BOUNDARY

When technical errors occur, log them on the system where they occur passing a simpler generic
SystemError back to the caller for reporting at the end-user interface [Longshaw and Woods
2005].

BACKTRACE Once an error occurs, log a stacktrace, because the state of the function where the error occurred
yields important information [Renzel 1997].

ENCODED ERROR
CODES

The actual error is encoded in the return code. The return code is a value from an enumeration
[Portland Pattern Repository].

ERROR CODE
WITH ERRNO

Returns a value indicating an error, and returns the actual error information out of band through
a global or thread-local variable, typically called errno [Portland Pattern Repository].

Proceedings of the 24th European Conference on Pattern Languages of Programs

